though KSbF₆ satisfies this criterion, it does not have this structure; instead, it is cubic (Bode & Voss, 1951) with adjacent ${\rm Sb}F_6^-$ octahedra oriented differently and resulting in a superlattice of 8 CsCl-like cubes. Bode (1951) reported $AgSbF_6$ to be isostructural with this compound. Bode & Voss (1951) claim that the SbFoctahedron is compressed along its 3-fold axis causing the F-Sb-F angle to be ~ 96°, and suggest that the rhombohedral fluoroantimonates(V) result from the periodic arrangement of these distorted octahedra. However, the SbF_6^- octahedron is regular in LiSbF₆, and the rhombohedral angle in the $BaSiF_6$ structure is a consequence of the regular 12-fold coordination of F⁻ about the Ba⁺⁺ (the SiF₆⁻⁻ shows little or no distortion). Thus, the proposal that there is an inherent distortion of SbF₆⁻ in these fluoroantimonates(V) is probably incorrect. In KAsF₆, described by Cox (1956) as having the $BaSiF_6$ structure, and for which the F positions were located by Roof (1955), the F-As-F angle is 88°, while the rhombohedral angle is $\sim 97 \frac{1}{2}^{\circ}$.

There is little in the literature with which to compare the Sb(V)-F bond length of 1.88 ± 0.02 Å in LiSbF₆ (limits of error taken as 3σ). A determination of this interatomic distance in KSbF₆ (Bode & Voss, 1951) led to 1.77 Å, but the approximate nature of the work makes it unsuitable for comparison with the present results. The other fluoroantimonate structures described above were based on estimated Sb(V)-F distances of 1.95 to 1.97 Å and apparently need to be revised. In fact, the semi-empirical estimates of bond length using the methods of Pauling (1960) and Zachariasen (1931) are not very useful for this bond; the covalent single-bond radius is 1.96 Å and the sum of univalent radii, corrected for charge is 1.81 Å. Finally, the apparent bond length in LiSbF₆ may be too small because of the thermal motion of the atoms, but this correction is estimated to be less than 0.01 Å.

The writer is grateful to D. O. Campbell for providing the crystals, R. D. Ellison for advice concerning instrumentation, D. J. Duchamp for data collection, and W. R. Busing for computational aid. The referee made several useful suggestions.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BODE, H. (1951). Z. anorg. Chem. 267, 62.
- BODE, H. & Voss, E. (1951). Z. anorg. Chem. 264, 144.
- BUSING, W. R. & LEVY, H. A. (1957). J. Chem. Phys. 26, 563.
- BUSING, W. R. & LEVY, H. A. (1959a). ORNL Central Files Memorandum 59-4-37.
- BUSING, W. R. & LEVY, H. A. (1959b). ORNL Central Files Memorandum 59-12-3.
- Cox, B. (1956). J. Chem. Soc., p. 876.
- CROMER, D. T. & LARSON, A. C. (1961). Acta Cryst. 14, 1226.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- HOARD, J. L. & VINCENT, W. B. (1940). J. Amer. Chem. Soc. 62, 3126.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
- PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
- Roof, R. B. (1955). Acta Cryst. 8, 739.
- SCHREWELIUS, N. (1938). Z. anorg. Chem. 238, 241.
- SCHREWELIUS, N. (1942). Arkiv Kemi, B, 16, No. 7.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- ZACHARIASEN, W. H. (1931). Z. Kristallogr. 80, 137.

Acta Cryst. (1962). 15, 1101

Die Struktur der Hochtemperaturform des Bariumgermanates $BaGeO_3(h)$

VON WALTRAUD HILMER

Institut für anorganische Chemie der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof, Deutschland

(Eingegangen am 23. Januar 1962)

Crystals of the high-temperature form of $BaGeO_3$ are orthorhombic with lattice parameters

a = 4.58, b = 5.68, c = 12.76 Å; space group $P2_12_12_1(D_2^4)$.

There are 4 molecules $BaGeO_3$ in the unit cell. The structure has been determined with the aid of Buerger's minimum function for projections [010] and [100] and refined by Fourier-difference syntheses. The GeO₄ tetrahedra are linked to form infinite chains, with two tetrahedra per identity period.

Während im β -Wollastonit, der Tieftemperaturform des Calciumsilikates CaSiO₃(t), nach Untersuchungen von Dornberger-Schiff, Liebau & Thilo (1955) und nach anderen Autoren Dreierketten als Anionen vorliegen, bilden in der Hochtemperaturform α -CaSiO₃ (Pseudowollastonit) nach Hilmer (1958, 1962) und Dornberger-Schiff (1961) die SiO₄-Tetraeder Dreierringe der Zusammensetzung $[Si_3O_9]^{6-}$. Gleichen Strukturtyp wie Pseudowollastonit haben nach Liebau (1960) und Hilmer (1958) auch Strontiumgermanat SrGeO₃, von dem bisher nur eine Form bekannt ist, und die Tieftemperaturformen des Bariumsilikates BaSiO₃(t) und Bariumgermanates BaGeO₃(t). Für die Hochtemperaturformen BaSiO₃(h) und BaGeO₃(h) wurde von Liebau (1960) das Vorliegen von Zweierketten (eventuell Viererringen) vermutet und darüber hinaus festgestellt, dass sie strukturanalog zu den Fluoberyllaten KBeF₃, RbBeF₃, NH₄BeF₃ und CsBeF₃ sind. Eine Strukturbestimmung schien daher wünschenswert, sie wurde am BaGeO₃(h) durchgeführt.

Die nach Angaben von Roth (1955) erhaltenen Kristalle sind von bräunlicher Farbe und nadelig ausgebildet. Aus Drehkristallaufnahmen um [100], [010] und [110] und aus Weissenbergaufnahmen um [100] der 0. und 1. Schicht und [010] der 0., 1. und 2. Schicht ergaben sich die Gitterkonstanten

a = 4,58, b = 5,68, c = 12,76 Å

und die Auslöschungsregeln

h00 mit h = 2n 0k0 mit k = 2n00l mit l = 2n vorhanden.

Fig. 1(a). P(u, w). Innerhalb des Maximums in (0, 0) wurde doppelter Intervallabstand gewählt.

Fig. 1(b). Minimumfunktion M(x, z).

Daher ist BaGeO₃(h) rhombisch, die Raumgruppe $D_2^4-P2_12_12_1$. Mit der pyknometrisch bestimmten Dichte $D_{25^\circ}=5,19$ g.cm.⁻³ ($D_{\text{ber.}}=5,16$ g.cm.⁻³), ergeben sich 4,03_{ber.}, das entspricht 4 Formeleinheiten BaGeO₃ in der Elementarzelle. Die Intensitäten wurden mit

Fig. 2. $\varrho(x, z)$. Gestrichelt gezeichnet wurde 1/10 des ausgezogenen Intervallabstandes.

Fig. 3. P(v, w). Für alle Maxima wurde gleicher Intervallabstand gewählt.

Fig. 4. $\varrho(y, z)$. Intervallabstand wie in Fig. 2.

Hilfe einer Vergleichsskala geschätzt und auf Lorentz-, Polarisationsfaktor und $\alpha_1 \alpha_2$ -Aufspaltung korrigiert. Auf Absorptionskorrektur konnte wegen der geringen Grösse der untersuchten Kristalle verzichtet werden.

Zur Bestimmung der Atomlagen wurden Patterson-, Fourier- und Differenzsynthesen [Projektionen auf die *ac*- und *bc*-Ebenen] berechnet, unter Berücksichtigung, dass die Raumgruppe kein Zentrum besitzt und nur die Projektionen zentrosymmetrisch sind.

Die berechnete Pattersonprojektion P(u, w) ist in Fig. 1(a) wiedergegeben. Unter Verwendung des Maximums P ergab sich nach Buerger (1951) die Minimumfunktion (Fig. 1(b)), aus der die ungefähren x, z-Parameter der Ba- und Ge-Atome entnommen und damit Vorzeichen zur Berechnung der ersten Elektronendichte-Projektionen bestimmt werden konnten. Die Koordinaten der Sauerstoffatome ergaben sich aus Elektronendichte-Projektionen und durch Berechnung von Differenzsynthesen konnte eine Verfeinerung aller x, z-Parameter erreicht werden. Die letzte be-

Tabelle 1. Parameter der Atomlagen im BaGeO₃(h)

	x	y	z
Ba	224	187	359
Ge	675	690	425
OI	267	730	440
O_{II}	738	885	326
OIII	730	394	410

Tabelle $2(a)$.	Beobachtete	und berechnete	Strukturfaktoren	der	(h0l)-Projektion
		(Ursprung in 2 ₁	parallel b)		

$h \ 0 \ l$	F_{o}	F_c		$h \ 0 \ l$	F_{o}	F_{c}		$h \ 0 \ l$	F_{o}	F_{c}	:	$h \ 0 \ l$	F_{o}	F_{c}
$0 \ 0 \ 2$	4	-3,9		$1 \ 0 \ 12$	12	9,2	į į	$2 \ 0 \ 14$	13	12,4	i	4 0 2	3	2.7
4	24	-21,4		13	1	-1,2		15	5	-5,0		3	5	-6,1
6	2	0,4		14	7	-4,9					i	4	7	- 8,8
8	2	0,8		15	1	0,6		301	1	-1,0	ļ	5	5	6,4
10	13	10,7		16	6	-5,9		2	10	-9,3	ĺ	6	6	-6,6
12	2	2,2						3	$\overline{5}$	-5,3		7	2	1,3
14	16	-15,2		$2 \ 0 \ 0$	28	-27,3		4	4	-4,4		8	5	6,1
				1	10	10,1		5	11	11,4		9	2	2,9
101		0,2		2	1	1,0	i i	6	8	9,0		10	6	7,2
2	8	8,1		3	4	4,0		7		0,5		11	2	-3,0
3	4	3,6	Í	4	14	16,7	į.	8	7	8,7		12	3	-3,1
4	12	12,2		5	6	-6,2		9	10	-11,5				,
5	6	-5,7		6	3	2,5		10	7	- 7,1		$5 \ 0 \ 1$	3	4,0
6	12	-14,0		7	2	1,6		11	4	3,7		2	8	9,8
7		0,3		8	3	-3,1		12	10	-9,6		3		1,0
8	16	-14,9	,	9	2	-2,9		13	4	3,6	ĺ	4	1	-1,6
9	6	5,4		10	10	- 9,8		14	2	3,0		5	9	-9,6
10	17	14,1		11		0,9						6	4	-4,3
11	2	-2,2		12		-0,2		400	9	10,3		7		0,2
				13	8	6.2		1	10	-10.6		8	2	-31

Tabelle 2(b). Beobachtete und berechnete Strukturfaktoren der (0kl)-Projektion

(Ursprung	in	2_1	parallel a)	
-----------	----	-------	-------------	--

0 k l	F_{o}	F_{c}	0 k l	F_{o}	F_{c}	0 k l	F_{o}	F_{c}	0 k l	F_{o}	F.
0 0 2	4	3,9	0 2 1	10	-9.0	0 3 10	п	10.7	054	ิรั	-85
4	24	-21,4	2	3	2,9	11	5	4.6	5		-0.5
6	2	-0,4	3	10	-9.8	12	7	- 5.7	6	10	-10.4
8	2	0,8	4	11	-11.2	13	_	0.7	7	5	51
10	13	-10,7	5	$\tilde{5}$	5,1	14	2	-2.7	8	7	8.5
12	2	2,2	6		-0.5		_	_,.	9		0,0
14	16	15,2	7		1,7	040		-0.8	10	11	9,8
			8		1,1	1	16	-13.8	11	5	-46
0 1 1	1	-0,6	9	6	-5,7	2		1.2			1,0
2	4	3,4	10	7	-7,7	3	14	-13.5	060	10	-9.5
3	16	15,0	11	6	5,8	4		1.0	1	8	-8.4
4	9	-8,7	12		0,3	5	5	6,3	2		-0.1
5	—	-0,2	13	9	8,3	6		-1,0	3	8	- 8.1
6	4	-5,2]4	11	10,6	7	2	1,8	4	7	7.3
7	26	-20,5	15	7	-6,5	8		-0,4	5	2	3.7
8	8	6,8				9	5	-5,0	6	$\overline{2}$	-1.5
9	4	-3,5	031	2	1,5	10		-0.9	7		0.7
10	5	4,7	2	7	7,0	11	8	8,1	8	3	-3.0
11	15	12,1	3	6	6,7	12		-0.9	9	1	-2.4
12	3	-2,5	: 4	12	- 13,1	13	8	8,7			, –
13		0,1	5	2	-2,9				071	2	2,0
14		-1,5	6	11	-11,8	051	2	1,8	2		1,0
15	4	- 3,0	7	7	- 9,1	2	5	5,2	3	8	-8,6
			8	11	12,0	3	4	-3,6	4	2	-3.7
$0\ 2\ 0$	-20	19.4	9		-0.5						

rechnete Elektronendichte-Projektion $\varrho(x, z)$ zeigt Fig. 2.

Zur Bestimmung der y-Parameter wurden entsprechende Synthesen für die bc-Ebene berechnet. Da die z-Parameter der Atome bereits bekannt waren, liess sich die Patterson-Projektion P(v, w) (Fig. 3) leicht deuten. Die Berechnung von Fourier- und Differenzsynthesen ergab die in Tabelle 1 zusammengestellten Koordinaten. Die letzte berechnete Elektronendichte-Projektion $\rho(y, z)$ zeigt Fig. 4.

In Tabelle 2 sind die mit diesen Werten berechneten Strukturfaktoren den experimentell ermittelten gegenübergestellt. Für die beobachteten Reflexe ergaben sich die *R*-Faktoren zu R(h0l) = 11,7% und R(0kl) =10,9% (R(h0l) = 12,2% und R(0kl) = 13,8%, wenn nicht beobachtete Reflexe mit der Hälfte der kleinsten geschätzten Intensität eingesetzt werden).

Beschreibung der Struktur

Es wurden mit den in Tabelle 1 angegebenen Koordinaten Abstände zwischen benachbarten Atomen berechnet. Sie sind in Tabelle 3 zusammengestellt.

Tabelle 3. Abstände und Winkel im $BaGeO_3(h)$

$\begin{array}{c} Ge-O_{I} \\ Ge-O_{II} \\ Ge-O_{III} \\ Ge-O_{I}' \\ O_{I}-O_{II} \\ O_{I}-O_{III} \\ O_{I}-O_{III} \\ O_{II}-O_{III} \\ O_{II}-O_{II}' \\ O_{II}-O_{II}' \\ O_{II}-O_{I}' \\ O_{II$	1,84 Å 1,70 1,71 1,89 3,06 2,87 2,77 2,99 2,75 2,88	Ba-O _I Ba-O _{II} Ba-O _{II} ' Ba-O _{II} ' Ba-O _{III} Ba-O _{III} ' Ba-O _{III} "	2,79 Å 2,94 2,84 2,62 2,99 2,67 2,64
 ♥ Ge-OI-Ge ♥ OI-Ge-OI' ♥ OI-Ge-OII ♥ OII-Ge-OIII 	2,88 110,2° 95,8 119,9 122,2	$\begin{array}{l} \gtrless O_1'\text{-}Ge\text{-}O_{111} \\ \gtrless O_1\text{-}Ge\text{-}O_{111} \\ \gtrless O_1'\text{-}Ge\text{-}O_{11} \\ \gtrless O_1'\text{-}Ge\text{-}O_{11} \end{array}$	106,0° 108,2 99,4

Der Abstand Ge-O im Tetraeder beträgt im Mittel 1,80 Å, der Abstand O-O 2,89 Å.

Wie aus Tabelle 3 ersichtlich ist, ergibt sich zwischen Germanium- und Brückensauerstoffatomen im Mittel ein merklich grösserer Abstand ($d_2 = 1,87$ Å) als zu den O-Atomen der freien Ecken $(d_1 = 1,71 \text{ Å})$. Ein Vergleich mit anderen Germanaten, die ebenfalls Kettenstruktur besitzen, wie z. B. Magnesiumgermanat MgGeO₃ (Zweierkette) (Roth, 1957) oder Calciumgermanat CaGeO₃ (Dreierkette) (Liebau, 1960), kann nicht erfolgen, da eine Strukturbestimmung noch nicht vorliegt. Auch Kupfergermanat CuGeO₃, das Einerketten als Anionen enthält (Ginetti, 1954), dürfte sich nicht für einen Vergleich eignen, da die Strukturbestimmung mit einem Zuverlässigkeitsfaktor von 31,9% abgebrochen wurde. Bei nahezu allen anderen Verbindungen mit Kettenstruktur, wie bei Silikaten, Phosphaten oder Arsenaten, wird gleichfalls ein merklich grösserer Abstand zwischen Zentralatom und Brückensauerstoffatomen beobachtet.

Ein Vergleich der Verhältnisse d_1/d_2 für Bariumgermanat mit entsprechenden mittleren Abständen, die für kondensierte Phosphate bekannt sind, führt auf nahezu den gleichen Wert:

$$(d_1/d_2)_{\text{BaGeO}_3(\hbar)} = 1,71/1,87 = 0,91$$

 $(d_1/d_2)_{\text{Phosphate}} = 1,45/1,62 = 0,90$.

Die Ba-Atome sind von sieben O-Atomen mit einem mittleren Abstand von 2,78 Å umgeben, wobei das Ba-Atom nahezu in der von 4O-Atomen (O_{II}, O'_{II}, O'_{II}) und O''_{III}) aufgespannten Ebene liegt. Dem Ba-Atom benachbarte Sauerstoffatome sind in Fig. 5(a) mit diesem gestrichelt verbunden. Die entsprechenden Abstände sind Tabelle 3 zu entnehmen.

Das Prinzip der Struktur ist in Fig. 5(a) und (b)wiedergegeben. Es zeigt sich, dass jedes Ge-Atom von vier Sauerstoffatomen umgeben ist, deren Mittelpunkte ein verzerrtes Tetraeder bilden. Die GeO₄-Tetraeder sind über Brückensauerstoffatome zu Ketten verknüpft, die eine Identitätsperiode nach zwei Tetraedern besitzen und eine zweizählige Schrauben-

Fig. 5. Schematische Darstellung der Struktur von BaGeO₃(h). (*a*) Projektion auf die *ac*-Ebene. (*b*) Projektion auf die *bc*-Ebene.

achse parallel zu a enthalten. Durch die zweizählige Schraubenachse, welche die Symmetrie der Kette bedingt, lassen sich diese Ketten als Schrauben auffassen.

Im BaGeO₃(h) liegen demnach Zweierketten mit Schraubencharakter vor, wobei, wie Fig. 5 zeigt, auf jede Elementarzelle ein Teil von zwei Zweierketten entfällt, die sich in ihrem entgegengesetzten Windungssinn unterscheiden.

Praktisch der gleiche Bau der Zweierketten wurde von Corbridge (1956) im Rubidiumphosphat $(RbPO_3)_n$ gefunden. Auch hier winden sich die Zweierketten um zweizählige Schraubenachsen und der pro Elementarzelle entfallende Teil von zwei verschiedenen Zweierketten setzt sich in entgegengesetzter Weise fort.

Herrn Prof. Dr. Dr. h. c. E. Thilo danke ich für sein

ständiges Interesse an dieser Arbeit, Herrn Dr. G. Krüger für die Herstellung der Substanz, Fräulein J. Bethge und Herrn R. P. Holzapfel für die gewissenhafte Durchführung des grössten Teils der Rechenarbeit.

Literatur

BUERGER, M. J. (1951). Acta Cryst. 4, 531.

- CORBRIDGE, D. E. C. (1956). Acta Cryst. 9, 308.
- DORNBERGER-SCHIFF, K., LIEBAU, F. & THILO, E. (1955). Acta Cryst. 8, 752.
- DORNBERGER-SCHIFF, K. (1961). Kristallografija 6, 859.
- GINETTI, Y. (1954). Bull. Soc. Chim. Belg. 63, 209.

HILMER, W. (1958). Naturwiss. 45, 238.

HILMER, W. (1962). (In Vorbereitung.)

LIEBAU, F. (1960). N. Jb. Mineral. Abh. 94, 1209.

Rотн, R. S. (1955). Amer. Min. 40, 332.

ROTH, R. S. (1957). J. Res. Nat. Bur. Stand. Wash. 58, 75.

Acta Cryst. (1962). 15, 1105

The Crystal Structure of Salesite, CuIO₃(OH)*

By Subrata Ghose

Mineralogical Institute, University of Bern, Sahlistrasse 6, Bern, Switzerland

(Received 22 January 1962)

Salesite, CuIO₃(OH) is orthorhombic, space group Pnma, with

$$a_0 = 10.80, b_0 = 6.71, c_0 = 4.79 \text{ Å}$$
.

Copper has a square planar co-ordination (Cu–OH 1.95 Å (×2) and Cu–O₂ 2.01 Å (×2)), with two further oxygens (Cu–O₁ 2.59 Å (×2)) completing a distorted octahedron. The iodine-oxygen distances within the trigonal-pyramidal iodate group are 1.78 Å and 1.82 Å (×2). The average O–I–O angle is 96.7°. Each iodine atom has three oxygen neighbors, in addition to the three in the iodate group. The structure of salesite is composed of copper octahedral chains, formed by sharing the bipyramidal edge, which are joined together by trigonal pyramidal iodate groups in a threedimensional network.

Introduction

The exact configuration of the iodate group has been studied in very few compounds. Apart from the earlier studies on HIO₃ (Rogers & Helmholz, 1941), NaIO₃ (MacGillavry & van Eck, 1943; Náray Szabó & Neugebauer, 1947), LiIO₃ (Zachariasen & Barta, 1931), only recently the structures of Ce(IO₃)₄. H₂O (Ibers, 1956), Ce(IO₃)₄ (Cromer & Larson, 1956), and Zr(IO₃)₄ (Larson & Cromer, 1961) have been determined with some precision. Salesite, CuIO₃(OH) is a naturally occurring basic copper iodate, found from Chuquicamata, Chile (Palache & Jarrell, 1939). Its structure establishes the exact configuration of the iodate group and the stereochemistry of the cupric ion. A grain of this rare mineral (U.S.N.M. 105071) was obtained through the courtesy of Dr George Switzer of the U.S. National Museum, Washington, D.C. for the structure determination.

The crystal data

Salesite is orthorhombic, crystal class mmm (Palache & Jarrell, 1939). The unit-cell dimensions, determined from Weissenberg photographs taken with Cu $K \alpha$ radiation, are:

$$a_0 = 10.80, b_0 = 6.71, c_0 = 4.79 \text{ Å},$$

giving axial ratios 1.6095:1:0.7139 compared with morphological values 1.6023:1:0.7439. The cell dimensions are in good agreement with those found by Richmond (in Palache & Jarrell, 1939). There are four formula units in the cell with D_{meas} . 4.77 g.cm.⁻³ and D_c 4.887 g.cm.⁻³. From the systematic absences

^{*} Mitt. Nr. 133, Abteilung für Kristallographie und Strukturlehre.